Shock-cloud interaction in the Vela SNR II. Hydrodynamic model

نویسندگان

  • M. Miceli
  • F. Reale
  • S. Orlando
  • F. Bocchino
چکیده

Context. In the framework of the study of the X-ray and optical emission in supernova remnants we focus on an isolated X-ray knot in the northern rim of the Vela SNR (Vela FilD), whose X-ray emission has been studied and discussed in Paper I. Aims. We aim at understanding the physical origin of the X-ray and optical emission in FilD, at understanding the role of the different physical processes at work, and at obtaining a key for the interpretation of future X-ray observations of SNRs. Methods. To this end we have pursued an accurate “forward” modeling of the interaction of the Vela SNR shock with an ISM cloud. We perform hydrodynamic simulations and we directly compare the observables synthesized from the simulations with the data. Results. We explore four different model setups, choosing the values of the physical parameters on the basis of our preliminary analysis of the X-ray data. We synthesize X-ray emission maps and spectra filtered through the XMM-Newton EPIC-MOS instrumental response. The impact of a shock front at 6 million Kelvin on an elliptical cloud 30 times denser than the ambient medium describes well the shock-cloud interaction processes in the Vela FilD region in terms of spectral properties and morphology of the X-ray and optical emission. Conclusions. The bulk of the X-ray emission in the FilD knot originates in the cloud material heated by the transmitted shock front, but significant X-ray emission is also associated to the cloud material, which evaporates, as an effect of thermal conduction, in the intercloud medium. The physical origin of the FilD optical emission is associated to thermal instabilities. In the FilD knot the X-ray emission associated to the reflected shock front is negligible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crushing of interstellar gas clouds in supernova remnants. I. The role of thermal conduction and radiative losses

We model the hydrodynamic interaction of a shock wave of an evolved supernova remnant with a small interstellar gas cloud like the ones observed in the Cygnus loop and in the Vela SNR. We investigate the interplay between radiative cooling and thermal conduction during cloud evolution and their effect on the mass and energy exchange between the cloud and the surrounding medium. Through the stud...

متن کامل

Crushing of interstellar gas clouds in supernova remnants II . X - ray emission

Context. X-ray observations of evolved supernova remnants (e.g. the Cygnus loop and the Vela SNRs) reveal emission originating from the interaction of shock waves with small interstellar gas clouds. Aims. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study...

متن کامل

Shock - cloud interaction in the Vela SNR observed with XMM - Newton

We analyzed an XMM-Newton EPIC observation of a bright knot, named FilD, in the northern rim of the Vela SNR, where the shock has encountered a cloud. The good combination of sensitivity, spectral, and spatial resolution allowed us to describe the internal structure of the observed ISM clouds and to obtain estimates of their temperature, density, O, Ne, and Fe abundances, and of their extension...

متن کامل

Crushing of interstellar gas clouds in supernova remnants

Context. X-ray observations of evolved supernova remnants (e.g. the Cygnus loop and the Vela SNRs) reveal emission originating from the interaction of shock waves with small interstellar gas clouds. Aims. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study...

متن کامل

X-ray Emission from the Vela Snr Shock Region: Spectral Fitting with a Non-equilibrium Ionization Model

We report on the 5 0 scale spectral analysis of the X-ray emission from a region near the edge of the Vela SNR with a Non-Equilibrium Ionization (NEI) model. We have found signiicant variations of temperature, density, ionization time and interstel-lar absorption. We have identiied an overdense region with higher density and lower temperature than the surrounding medium. That can be interpreted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006